
Viewpoints, Formalisms, Languages, and Tools for
Cyber-Physical Systems∗

David Broman1,2 Edward A. Lee1 Stavros Tripakis1 Martin Törngren3

{broman,eal,stavros}@eecs.berkeley.edu, martint@kth.se

1University of California, Berkeley, USA 2Linköping University, Sweden 3KTH, Sweden

ABSTRACT
Cyber-physical systems (CPS) are becoming indispensable
in our modern way of life. As an application domain CPS is
not new. As an intellectual discipline, however, it is. This
paper focuses on CPS modeling, which is an essential activ-
ity in CPS design, with multiple challenges. In particular,
stakeholders lack a systematic framework and guidelines to
help them choose among the many available modeling lan-
guages and tools. We propose such a framework in this pa-
per. Our framework consists of three elements: viewpoints,
which capture the stakeholders’ interests and concerns; con-
crete languages and tools, among which the stakeholders
must make a selection when defining their CPS design en-
vironments; and abstract, mathematical formalisms, which
are the “semantic glue” linking the two worlds. As part
of the framework, we survey various formalisms, languages,
and tools and explain how they are related. We also provide
examples of viewpoints and discuss how they are related to
formalisms.

1. INTRODUCTION
Cyber-physical systems (CPS) are becoming an integral part
of modern societies [11]. As an application domain CPS is
not new. For example, early automotive embedded systems
in the 1970s already combined closed-loop control of the
brake and engine subsystems (physical parts) with the em-
bedded computer systems (cyber parts). Since then, new
requirements, functionalities and networking have dramat-
ically increased the scope, capabilities and complexities of
CPS. This has created needs to bridge the gaps between
the separate CPS sub-disciplines (computer science, auto-
matic control, mechanical engineering, etc.) and to estab-
lish CPS as an intellectual discipline in its own right. The
development of a CPS involves many stakeholders who are
interested in different aspects of the system. Consider for
example the development of an embedded control system
such as an advanced driver assistance system (ADAS) (e.g.,
adaptive cruise control). Building such a system naturally
involves multiple engineering disciplines, dealing with re-
quirements, control design, software development, hardware
development, etc. In an actual organization, persons can

∗Work supported in part by NSF awards #0720882 (CSR-
EHS: PRET), #0931843 (CPS: Large: ActionWebs), and
#1035672 (CPS: Medium: Ptides), ARL award #W911NF-
11-2-0038, AFRL, SRC FCRP MuSyC, and CHESS which
receives support from Bosch, National Instruments, Thales,
and Toyota. The first author was funded by the Swedish
Research Council #623-2011-955 and the last author by the
ArtistDesign Network of Excellence.

take on one or more of these roles. Each stakeholder has a
number of questions and decisions that need to be resolved.
Modeling plays a key role in such resolution.

Reflecting the heterogeneity of CPS, many modeling lan-
guages and tools are typically employed. This leads to mul-
tiple models (of different aspects) captured in different mod-
eling languages and tools, and with partly unclear relations
among them. For example, to support control design, a
control engineer might use continuous time models of the
plant and of the controllers, to later refine the control sys-
tem models to discrete-time models prepared for code gen-
eration. Software engineers may use various UML diagrams
to design different aspects of the software, parts of which
later will have to be integrated with the code generated
controllers. System engineers will use yet other models to
describe the system interfaces, reliability properties, etc. It
is clear that developers would benefit from more systematic
ways to make choices about the languages and tools they use.
Among other benefits, this should also help avoid, as far as
possible, what has been called the “tyranny of tools” [5]. A
number of useful surveys of modeling languages and tools ex-
ist in the literature, for instance, see [6, 11, 13, 18, 30], or the
report of the ARTIST project1. Some works also cover spe-
cific CPS modeling or design-space exploration challenges
and how to address them, e.g. [11, 32]. While these works
provide valuable insight into how to deal with specific mod-
eling phenomena, they still leave a gap in how to select a
set of modeling languages and tools that meet the needs of
stakeholders in CPS design.

In this paper, we propose a framework that attempts to
fill this gap. The framework consists of three elements and
their relations, as illustrated in Figure 1: viewpoints (Sec-
tion 2), capturing the stakeholders’ interests and concerns;
concrete modeling languages and tools (Section 4), which
the stakeholders must choose at different stages of the CPS
design flow; and abstract, mathematical formalisms (Sec-
tion 3), which are the“semantic glue” linking the two worlds.
Methodologically, we envision a process where stakeholders
first identify a given viewpoint or set of viewpoints, then de-
termine one or more formalisms that are most appropriate
for these viewpoints, and finally choose one or more concrete
languages and tools supporting these formalisms. Our con-
tribution lies in introducing the framework. As part of the
framework, we survey various formalisms, languages, and

1http://www.artist-embedded.org/artist/
ARTIST-Survey-of-Programming

http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming

Formalisms Languages and ToolsViewpoints

supported by implemented by

based on

Figure 1: Framework for Viewpoints, Formalisms,
Languages and Tools.

tools and explain how they are related. We also provide
examples of viewpoints and discuss how they are related to
formalisms.

2. VIEWPOINTS
We adopt the terminology of the ISO/IEEE standard 42010
[22] and apply and adapt it to CPS. We say that each stake-
holder has concerns which can be captured (or framed) into
viewpoints. For the advanced driver assistance system ex-
ample mentioned above, the control designers are interested
in control system performance and robustness, given con-
straints imposed by the plant, senors and actuators. A soft-
ware engineer is another stakeholder. While both control
and software stakeholders may have performance as a key
concern, the interpretation of performance would be differ-
ent, for example in terms of ‘throughput’ for the software
engineer vs. ‘bandwidth’ or ‘rise time’ for the control engi-
neer. Even when different stakeholders are interested in the
same system parts and have same concerns (e.g., a software
design engineer and a software tester are likely to both be
interested in the software performance), their different roles
will determine a slightly different emphasis of their work and
how they develop and use related models. We therefore say
that a viewpoint is characterized by one or more concerns,
parts (interests) and the role of the stakeholder.

To elicit viewpoints, we thus identify stakeholders, their con-
cerns and the parts they are interested in. This concept is
depicted in Figure 2, illustrating three example viewpoints
identified by a name, the involved concern(s) (such as e.g.
robustness or performance), and the system parts/subsystems
of interest (note that the parts dimension is not explicitly
identified in [22]).

As illustrated in Figure 2, we use the term concern to refer
to both functional and non-functional aspects of a system
(these can be seen as a requirements dimension) whereas
the parts refer to realization components/platforms (at some
level of abstraction). In the example of the figure, the con-
trol performance viewpoint encompasses the control algo-
rithm functionality and its performance (the concerns) and
components corresponding to the controller, sensors, actu-
ators and physical plant (the parts). The software view-
point, dealing with controller realization, encompasses per-
formance and control algorithm coding concerns as well as
software and computing platform parts. The determination
of appropriate viewpoints is up to each organization. For
example, the control performance and control robustness
viewpoints could well be merged into one viewpoint. The
more stakeholders, the more complete the set of concerns
and parts will be.

Energy
Robustness

Performance

ADAS Algorithm

Concerns

Parts

Controller

Software

Sensors and
Actuators

Physical Plant

Computing
Platform

Control Robustness
Design Viewpoint

Software
Design

Viewpoint

Control Performance
Design Viewpoint

Figure 2: Example of a viewpoints matrix.

According to [22], establishing a viewpoint means defining
guidelines and conventions such as recommended types of
models, languages, design rules, modeling methods and anal-
ysis techniques. The modeling choices will thus be driven by
the context of the design task at hand, including the stake-
holder concerns. Our framework follows the same spirit,
however, a major difference and contribution is that we iden-
tify a common ground in terms of formalisms.

3. FORMALISMS
In this section, we review some formalisms which are useful
in modeling CPS. Our goal is by no means to be exhaustive,
but merely to give examples of formalisms; in particular,
those listed in Figure 3. Notable omissions include stochas-
tic formalisms, as well as formalisms used in scheduling and
real-time scheduling theory. The links between the view-
points and formalisms shown in this figure are ‘support’ rela-
tions, loosely interpreted to mean formalisms which are suit-
able for modeling various aspects of the corresponding view-
point. For instance, the ‘Control Robustness Design’ view-
point is supported by the ‘Timed and Hybrid Automata’ and
‘Differential Equations’ formalisms. Again, we do not neces-
sarily mean to be exhaustive in our description of such links.
We also note that the formalisms presented below are not
necessarily disjoint with each other in terms of expressive-
ness, e.g., hybrid automata subsume finite state machines or
classes of differential equations.

3.1 State Machines
State machines and automata are basic formalisms to de-
scribe discrete dynamical systems. State machines and au-
tomata come in many variants, therefore forming a class
of formalisms rather than a single formalism. Finite-state
machines [24] consist of finite sets of inputs, outputs, and
states, an output function that describes how outputs are
computed, and a transition function that describes how the
system changes state. The model can be generalized so
that states, inputs, or outputs are modeled by variables
with infinite domains (e.g., of type integer or real). In
that sense, difference equations can also be seen as describ-
ing state machines. The model can also be generalized to

Viewpoints Languages and ToolsFormalisms

Differential
Equations

State
Machines

Timed and
Hybrid Automata

Dataflow

Discrete
Event

EOO Languages
Example: Modelica

Block Diagram Languages
Examples: Simulink and Scicos

Multi-Formalism Languages and Tools
Examples: Ptolemy II, AToM3, and Modelyze

Hardware Description Languages
Examples: VHDL, Verilog, and AMS extensions

Reactive languages
Examples: SCADE/Lustre and Giotto

Model Checkers
Examples: Spin, NuSMV, and UPPAAL

Control
Performance

Design

Software
Design

Control
Robustness

Design

Figure 3: Relationships between viewpoints, formalisms, languages, and tools. Solid and dashed lines repre-
sent strong and weak relationships, respectively.

non-deterministic machines, where the output and transi-
tion functions become relations. Non-determinism is useful
when some parts of the system’s dynamics are abstracted
away (e.g., specific input values).

Finite-state machines are a natural model to describe hard-
ware systems (e.g., digital circuits). State machines (pos-
sibly infinite-state) can also be used to describe embedded
software systems (e.g., periodic controllers). State machines
can even be used to capture systems with continuous dynam-
ics at an abstract level. For example, the finite automaton
shown in Figure 4 describes the transitions between three
gears in a car. Even though this is a very simple automa-
ton, it still provides some interesting information about the
system: in particular, it states that the car cannot “jump”
from gear 1 directly to gear 3, but must first pass from gear 2.

Gear 1 Gear 2 Gear 3

Figure 4: A simple finite-state automaton describing
transitions between gears in a car.

Capturing large and complex systems with a single, “mono-
lithic” state machine is not practical. Instead, such systems
are typically built by combining a number of simpler com-
ponents. It is natural to model each component separately,
and then compose the components somehow. Two promi-
nent composition paradigms for formalisms such as state
machines are synchronous and asynchronous composition.
In the synchronous composition paradigm all machines ex-
ecute in “lockstep”, that is, they execute simultaneously at
the same rate, usually communicating via input-output vari-
ables. This is natural when modeling synchronous hardware,
where components in a circuit are usually driven by a com-
mon clock. In asynchronous composition, each machine exe-
cutes at its own pace. Communication is achieved via shared
variables or message passing. This is natural when modeling

concurrent processes or threads.

Hierarchical state machines (HSMs), such as Statecharts
[17], can be seen as another way of composing state ma-
chines. HSMs make it easier, compared to one-level FSMs,
to model and organize large state machines, by composing
states together in a hierarchical fashion. They are also useful
in capturing fault- or exception-handling mechanisms. For
instance, the top-level of a HSM could consist of two states
representing a “normal” and a “faulty” mode: the former de-
scribes what the system should do when everything works
as expected, using an internal machine within that mode;
the faulty mode describes what the system should do when
a fault occurs, using another internal machine.

3.2 Differential Equations
A differential equation is a mathematical equation contain-
ing functions and derivatives. Differential equations are in
particular used for modeling the physical plant of a CPS.
Differential equations can be broadly classified into ordinary
differential equations (ODEs), differential-algebraic equa-
tions (DAEs), and partial differential equations (PDEs).

An ODE [15] is a differential equation with one indepen-
dent variable. A first-order ODE has the general form
F
(
t, x, ẋ) = 0 or explicit form ẋ = f

(
t, x), where x ∈ Rn is

the unknown state vector (a.k.a. dependent variables) and
t the independent variable. In a CPS context, t typically
represents time, and the system of equations is often aug-
mented with an input signal u(t). The order of a differential
equation is the highest derivative of a dependent variable.
For example, Newton’s second law of motion F = mẍ is a
second-order differential equation, where ẍ is the accelera-
tion. A solution to a differential equation is a function x(t)
that satisfies the ODE for a given interval. When simulating
a physical system, it is desirable to find a unique solution by
providing initial conditions. An ODE together with initial
conditions is called an initial value problem: ẋ = f

(
t, x),

OFF
ẋ = −a · x
x ≥ 18

ON
ẋ = −a · (x− 30)

x ≤ 22

x ≤ 19

x ≥ 21

Figure 5: A thermostat as a hybrid automaton.

x(t0) = x0 where x0 ∈ Rn is the initial conditions. Note
that the dimensions of the vectors x0 and x are equal. In a
DAE [25], all dependent variables may not appear differenti-
ated. The general form of a DAE is F (t, x, ẋ, y) = 0, where
t is the independent variable of time, x a vector of vari-
ables that appear differentiated, and y a vector of algebraic
variables. A PDE is a differential equation that contains
multi-variable functions and partial derivatives. PDEs are
important for physical modeling, but compared to ODEs are
more difficult to solve. There exist various numerical tech-
niques for solving PDEs, such as the finite element method
(FEM) and method-of-line (MOL) [7].

3.3 Timed and Hybrid Automata
Discrete state machines can be used in capturing the cyber
parts of a CPS, while ODEs and DAEs can be used for the
physical parts. Timed and especially hybrid automata for-
malisms combine both worlds, therefore allowing to describe
a CPS as a whole.

Timed automata (TA) [3] extend finite automata with spe-
cial continuous variables called clocks, which measure time.
The main strength of the TA formalism is that it allows to
capture quantitative continuous-time properties. For exam-
ple, the property“at most 5 time units elapse between events
a and b” can be captured with a TA which resets a clock x
to 0 when it receives event a and tests whether x ≤ 5 when
it receives b.

Hybrid automata [2] can be viewed as a generalization of
timed automata, where the continuous variables can have
more complex dynamics than ẋ = 1. In particular, they
can have dynamics described by ODEs and DAEs. The dif-
ference from the normal ODE and DAE formalisms is that
in hybrid automata the dynamics can be different in dif-
ferent automaton states (called locations or modes, in order
to be distinguished from the true state of the automaton
which includes the continuous variables). The behavior of
a hybrid automaton is an alternation of continuous phases
and discrete steps: in a continuous phase, time elapses and
the continuous variables evolve according to the dynamics
of the current location; in a discrete step, the automaton
takes a transition to a new location (this is assumed to be
instantaneous). As an example, Figure 5 shows a simple
hybrid automaton modeling a thermostat (example taken
from [28]). The automaton has two discrete states, labeled
“OFF” and “ON”. The dynamics of a variable x represent-
ing temperature are given as a differential equation at each
state. Note that the combination of transition guards (e.g.,
x ≤ 19) and mode invariants (e.g., x ≥ 18) enable models
with non-determinism, but with constraints on their behav-
ior.

3.4 Dataflow Formalisms
Most CPS are concurrent systems, in the sense that they
consist of multiple sub-systems operating at the same time

and exchanging information in some way. Dataflow is an im-
portant paradigm in concurrency, where a number of concur-
rent agents (actors) operate on sequences of data (streams).
Dataflow formalisms such as static data flow (SDF) [27]2

and its variants are natural in modeling signal-processing
systems. In SDF, actors communicate by sending to each
other streams of tokens. Tokens are stored conceptually in
FIFO queues. When an actor has enough tokens at its in-
put queues it can fire, thereupon producing tokens at its
output queues. An important aspect of SDF models is their
analyzability: many interesting properties such as absence
of deadlocks (an actor “stuck” with not enough tokens to
fire) or queue boundedness (can the model be executed with
bounded queues?) are decidable. Moreover, timed exten-
sions of SDF and related formalisms, where actor firings
take time, can be used to model, analyze and optimize (via
scheduling) properties such as throughput or latency [31],
which are critical in signal-processing applications.

Dataflow formalisms are also fundamental in modeling dis-
tributed systems. In fact, SDF and its variants can be
seen as subclasses of Kahn process networks (KPN) [23]
a very general and elegant formalism, where concurrent
processes are modeled as sequential programs communicat-
ing via FIFO queues. The main property of a KPN is
that, despite the asynchronous execution of processes (non-
deterministic interleaving), the streams of data produced at
each queue in the network are uniquely defined, a property
called determinacy. This is in contrast to many other models
of concurrency, including the prevalent paradigm of threads
communicating via shared memory.

3.5 Discrete-Event Formalisms
The term “discrete-event system” is used in many domains
and communities to mean different things. We use it here
to group together a number of formalisms which are based
on concurrent actors manipulating streams of timed events,
such as DEVS [34], real-time process networks [33], or actor
theories [14].3 The DE paradigm is prevalent in simulation
frameworks in different application domains, from queueing
systems and networks to circuits.

4. LANGUAGES AND TOOLS
Formalisms are mathematical objects consisting of an ab-
stract syntax and a formal semantics. Languages are con-
crete implementations of formalisms. A language has a con-
crete syntax, may deviate slightly from the formalism in the
semantics that it implements, or may implement multiple
semantics (e.g., changing the type of numerical solver in a
simulation tool may change the behavior of a model). Also, a
language may implement more than one formalisms. Finally,
a language is associated with tools to support it, for example
parsers, simulators, model-checkers, and code generators.
As an example of the distinction, timed automata [3] is a
formalism, whereas Uppaal timed automata [26] and Kronos
timed automata [9] are languages. In the rest of this section,
we highlight some languages and tools (depicted in Figure 3),

2 We use the term ‘static’ instead of ‘synchronous’ not to
confuse between SDF and synchronous languages.
3 In this sense, timed automata can also be seen as a
discrete-event formalism. We categorize timed automata
separately for historical reasons.

which are used for modeling, simulation, and verification of
cyber-physical systems. Our categorization and list of ex-
ample languages are in no way exhaustive; it merely serves
the purpose of demonstrating the proposed framework.

Model checkers are tools used to automatically verify
whether a model fulfills a specification. For early model
exploration, model-checkers typically also support simula-
tion mechanisms, although their main strength is exhaus-
tive verification. Spin [20] is a model-checker designed for
modeling and verification of asynchronous software systems.
Models are written in PROMELA (Process Meta Language).
Correctness claims are specified as assertions or as Linear
Temporal Logic (LTL) formulas. The latter are translated
into Büchi automata for the verification task. NuSMV [8]
is a model-checker primarily used for synchronous systems
such as digital circuits. UPPAAL [26] is a model-checker
based on timed automata extended with data variable types
and other features. A user can specify and verify invariant,
reachability and some liveness properties.

Block diagram languages may be used for modeling both
the cyber and physical parts of a CPS. A model is defined
as a directed graph, where each node, called a block, has as
a set of input and output ports. A widely used block dia-
gram environment is the commercial product SimulinkR©4.
Simulink can describe both continuous-time and discrete-
time systems using differential equations and discrete time
difference equations, respectively. Its semantics are implic-
itly defined by its simulation engine. An open source alter-
native to Simulink is Scicos5, a toolbox to the Scilab envi-
ronment.

Equation-based object-oriented (EOO) languages are,
in contrast to block diagram languages, acausal (also called
non-causal), meaning that the direction of information flow
between model components is not specified a priori. The
current state-of-the-art EOO language is Modelica6, which
can be used, in particular, for modeling and simulating the
physical parts of a CPS. The continuous-time semantics of
the models are specified using differential-algebraic equa-
tions (DAEs), which can be further composed and connected
into hierarchical model structures. Modelica also supports
hybrid models, models combining discrete and continuous-
time semantics. Functional hybrid modeling (FHM) [29], a
related language category, is also based on acausal modeling,
but uses a functional approach to model composition. The
main strength of EOO and related languages is—compared
to block diagram languages—that the topology of the real
physical system and the model coincide, which simplifies
model reuse.

Reactive languages are designed for implementing reac-
tive systems, the cyber part of a CPS that continuously
reacts to the physical environment. Lustre [16] and its com-
mercial implementation SCADE, are synchronous reactive
languages. These languages are equipped with a tool chain
for efficient program compilation as well as for verification
of program properties. Giotto [19] is a time-triggered reac-

4http://www.mathworks.com/products/simulink/
5http://www.scicos.org
6http://www.modelica.org

tive language for implementing embedded systems with hard
real-time constraints.

Hardware Description Languages’ (HDLs) main pur-
pose is to model and specify digital circuits. HDL specifi-
cations are executable, either by performing discrete-event
simulation or—for a subset of the languages—by automat-
ically synthesize hardware logic. Analog and mixed signal
(AMS) extensions, such as VHDL-AMS [21] and Verilog-
AMS [1], extend these HDLs with differential equations,
giving modeling capabilities similar to acusal modeling in
EOO languages. HDLs are primary used for implementing
the cyber part of a CPS. They can, for example, by synthe-
sizing to field-programmable gate arrays (FPGAs), improve
throughput compared to a pure software implementation.

Multi-formalism languages and tools implement and
combine different formalisms and models of computation.
Ptolemy II [12] is an open-source and extensible modeling
and simulation environment. It follows an actor-based ap-
proach and supports heterogeneity by defining an executable
abstract semantics (concretely, a Java interface) which ac-
tors implement. AToM3 [10] is a graphical tool that com-
bines multi-formalism modeling and meta-modeling. By us-
ing a formalism transformation graph (FTG), models can be
automatically converted between different formalisms. An-
other approach of supporting multi-formalisms is to develop
and combine different domain specific languages (DSLs).
For example, Modelyze [4] is a host language that is es-
pecially designed for embedding DSLs that support different
equation-based formalisms. Commercial tools with exten-
sible toolboxes and integration between products, can also
be seen as having multi-formalism capabilities. For exam-
ple Matlab/Simulink/Stateflow/SimEvents combine several
formalisms. A standardized co-simulation interface, such as
the functional mock-up interface (FMI)7, is another way of
combining tools based on different formalisms.

5. DISCUSSION
There are several challenges when instantiating and applying
this framework. In this section, we discuss three of these
challenges and how we partially address them.

The first challenge concerns how categories of viewpoints,
formalisms, languages, and tools are related to each other.
We consider it essential that an analysis of stakeholders,
concerns, and parts is made in order to provide a ratio-
nale for selecting formalisms, languages and tools. Such
an analysis is highly context-dependent and it is therefore
difficult to be exhaustive regarding viewpoints, and conse-
quently difficult to give a general mapping between view-
points and formalisms. The mapping between formalisms
and languages/tools is, on the other hand, somewhat clearer.
This mapping is, however, between formalisms and cate-
gories of languages and tools. Because languages within the
same category can relate to slightly different formalisms, we
introduce the notion of weak and strong relations (see Fig-
ure 3). In this paper, we have intentionally not formalized
the meaning of these relations.

The second challenge deals with formalisms and how they

7http://www.functional-mockup-interface.org

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.scicos.org
http://www.scicos.org
http://www.modelica.org
http://www.modelica.org
http://www.functional-mockup-interface.org
http://www.functional-mockup-interface.org

are combined and used together. Existing languages and
tools typically combine several formalisms, enabling model-
ing of complex systems. Precisely formalizing the combina-
tion of formalisms is, however, very difficult. The challenges
of combining, relating, and refining formalisms are core parts
of CPS design and consequently for the proposed framework.

The third challenge is how the framework’s categories and
relations can be used as guidelines for different stakehold-
ers when selecting languages and tools. In this regard, our
current work should be seen as preliminary; we have not
yet evaluated how it can be used in practice. We envision,
however, that in an extended version of this framework, the
stakeholders start by defining a (context-dependent) view-
points matrix and, by doing so, elicit a number of useful
viewpoints. Then, by using the framework, the stakeholders
get a better understanding of the most relevant formalisms,
languages, and tools. We contend that the mapping is use-
ful as a guideline, although it does not give an easy cheat
sheet for selecting tools; the area of CPS modeling is far too
complex for making such oversimplifications.

6. CONCLUSIONS
We propose a framework for assisting CPS designers in the
modeling process by relating viewpoints, formalisms, lan-
guages, and tools. As part of future work, we intend to
create a comprehensive extension of our framework where
viewpoints, frameworks, languages and tools, and their rela-
tions are covered considerably more, both in terms of depth
and width.

7. REFERENCES
[1] Accellera Organization. Verilog-AMS Language Reference

Manual - Analog & Mixed-Signal Extensions to Verilog
HDL Version 2.3.1, 2009.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

[3] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[4] D. Broman and J. G. Siek. Modelyze: a gradually typed
host language for embedding equation-based modeling
languages. Technical Report UCB/EECS-2012-173, EECS
Dept., University of California, Berkeley, June 2012.

[5] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda,
and D. Ratiu. Seamless model-based development: From
isolated tools to integrated model engineering
environments. Proc. of the IEEE, 98(4):526 –545, 2010.

[6] L. P. Carloni, R. Passerone, A. Pinto, and A. L.
Angiovanni-Vincentelli. Languages and tools for hybrid
systems design. Found. Trends Electron. Des. Autom.,
1:1–193, January 2006.

[7] F. E. Cellier. Continuous System Modeling.
Springer-Verlag, New York, USA, 1991.

[8] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In CAV ’02, 2002.

[9] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The Tool
KRONOS. In R. Alur, T. Henzinger, and E. Sontag,
editors, Hybrid Systems III: Verification and Control,
volume 1066 of LNCS, pages 208–219. Springer, 1996.

[10] J. de Lara and H. Vangheluwe. AToM 3: A Tool for
Multi-formalism and Meta-modelling. In Fundamental
approaches to software engineering, volume 2306 of LNCS,
pages 174–188. Springer-Verlag, 2002.

[11] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli.
Modeling cyber-physical systems. Proc. of the IEEE,
100(1):13 – 28, January 2012.

[12] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity – the Ptolemy approach. Proc. of the IEEE,
91(1):127–144, Jan. 2003.

[13] J. El-khoury, D. Chen, and M. Törngren. A survey of
modeling approaches for embedded computer control
systems. Technical Report 2003:36, KTH, 2003.

[14] M. Geilen, S. Tripakis, and M. Wiggers. The earlier the
better: A theory of timed actor interfaces. In Hybrid
Systems: Computation and Control. ACM, 2011.

[15] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary
differential equations: Nonstiff problems. Springer, 1993.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE.
Proc. of the IEEE, 79(9):1305–1320, 1991.

[17] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8:231–274, 1987.

[18] D. Henriksson, O. Redell, J. El-Khoury, M. Törngren, and
K. Arzén. Tools for real-time control systems co-design – a
survey. ISRN LUTFD2/TFRT-7612-SE, Dept. of
Automatic Control, Lund Institute of Technology, 2005.

[19] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A
time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84–99, 2003.

[20] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, 2003.

[21] IEEE 1706.1 Working Group. IEEE Std 1076.1-1999, IEEE
Standard VHDL Analog and Mixed-Signal Extensions.
IEEE Press, New York, USA, 1999.

[22] ISO/IEC/IEEE 42010:2011. Systems and software
engineering - Architecture description, the latest edition of
the original IEEE Std 1471:2000, Recommended Practice
for Architectural Description of Software-intensive
Systems. IEEE and ISO, 2011.

[23] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74, Proceedings of
IFIP Congress 74. North-Holland, 1974.

[24] Z. Kohavi. Switching and finite automata theory, 2nd ed.
McGraw-Hill, 1978.

[25] P. Kunkel and V. Mehrmann. Differential-Algebraic
Equations Analysis and Numerical Solution. European
Mathematical Society, 2006.

[26] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology
Transfer (STTT), 1(1):134–152, 1997.

[27] E. Lee and D. Messerschmitt. Synchronous data flow. Proc.
of the IEEE, 75(9):1235–1245, 1987.

[28] J. Lygeros. Lecture notes on hybrid systems, 2004.

[29] H. Nilsson, J. Peterson, and P. Hudak. Functional Hybrid
Modeling. In Practical Aspects of Declarative Languages :
5th International Symposium, PADL 2003, volume 2562 of
LNCS, pages 376–390, Jan. 2003.

[30] C.-J. Sjöstedt. Modeling and Simulation of Physical
Systems in a Mechatronic Context. PhD thesis, KTH
School of Industrial Engineering and Management, 2009.

[31] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering
trade-off exploration for cyclo-static and synchronous
dataflow graphs. Computers, IEEE Transactions on,
57(10):1331 –1345, Oct. 2008.

[32] N. Trcka, M. Hendriks, T. Basten, M. Geilen, and L. J.
Somers. Integrated model-driven design-space exploration
for embedded systems. In ICSAMOS, pages 339–346, 2011.

[33] R. K. Yates. Networks of real-time processes. In E. Best,
editor, Proc. of the 4th Int. Conf. on Concurrency Theory
(CONCUR), volume LNCS 715. Springer-Verlag, 1993.

[34] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, 2 edition, 2000.

	Introduction
	Viewpoints
	Formalisms
	State Machines
	Differential Equations
	Timed and Hybrid Automata
	Dataflow Formalisms
	Discrete-Event Formalisms

	Languages and Tools
	Discussion
	Conclusions
	References

